Toggle navigation
正态分布拟合对比
By
d***_
2020-04-10 06:20:00
脚本
16
21
作品使用的第三方脚本
https://cdnjs.cloudflare.com/ajax/libs/mathjs/6.6.2/math.min.js
数据管理
上传数据
支持小于 5M 任意格式(csv, xlsx, json, xml, ...)的数据文件
上传后可以通过生成的文件链接异步获取托管的数据。
历史数据
0 条
无历史数据
代码修改记录
信息提示
保存作品
对当前截图不满意?你还可以
上传本地截图
重新截图
作品名称
作品描述
标签
geo
grid
legend
markLine
markPoint
bar
effectScatter
line
lines
map
timeline
title
toolbox
tooltip
visualMap
作品默认版本
最新
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
20:11:45
图表已生成
整理代码
刷新
代码
//相关详细说明:https://www.cnblogs.com/daxiongblog/p/12679363.html var formulaCalcByFunc = function(formula, digit) { var pow = Math.pow(10, digit); return parseInt(formula * pow, 10) / pow; }; function gaussFunc(x, xMaxi, yMaxi, s) { return yMaxi * math.exp(-((x - xMaxi) * (x - xMaxi) / s)); } /** * 标准正态分布函数 * @@param x 数据 * @@param mean 平均数 * @@param stdev 标准差 */ function normalDistributionfun(x, mean, stdev) { return (1 / (Math.sqrt(2 * Math.PI) * stdev)) * Math.exp(-1 * ((x - mean) * (x - mean)) / (2 * stdev * stdev)); } /**第二种方法: 使用标准正态分布函数实现的方法,通过在峰值周围寻找均值 **结果将会偏向原始数据峰值 ****/ function calcNormallineDta2(xData, yData) { var result = []; var totalCount = 0; var firstMode = 0;//峰值起始位置 var modeCount = 0;//找到目前数据的峰值 for (var i = 0; i < yData.length;i++) { totalCount += yData[i]; if (yData[i] > modeCount) { modeCount = yData[i]; firstMode = i; } } //找出出x轴左右范围内的均值(关键代码) var mode = 0; var modeDuplicates = 0; var fellOffTop = true; for (var j = firstMode; j < yData.length; j ++) { if (yData[j] > yData[firstMode] - (yData[firstMode]/10)) {//10:分布线系数 mode += j ; modeDuplicates++; } else { fellOffTop = false; break; } } var fellOffBottom = true; for (var k=firstMode-1;k>=0;k--) { if (yData[k] > yData[firstMode] - (yData[firstMode] / 10)) {//10:分布线系数 mode += k; modeDuplicates++; } else { fellOffBottom = false; break; } } var mean; if (fellOffBottom || fellOffTop) { mean = firstMode; } else { mean = mode/ modeDuplicates; } //求出标准差 var stdev = 0; for (var n = 0; n < yData.length;n++) { stdev += Math.pow((n - mean), 2) * yData[n]; } stdev /= totalCount-1; stdev = Math.sqrt(stdev); //带入正态分布公式 for (var m = 0; m < yData.length;m++) { var probability =normalDistributionfun(m,mean,stdev); result.push(Math.round(probability * totalCount*100)/100); } return result; } var yData = [ //12, 18.5, 37, 49, 66, 96.5, 118.5, 152.5, 215.5, 301.5, 403.5, 561, 876.5, 1328, 2017, 3374, 5478, 8938, 14880, 23522.5, 35697.5, 52651, 74815, 103371, 138536, 179551, 226008.5, 277843, 334386.5, 393973.5, 455601, 519580.5, 587045.5, 656523.5, 726978, 798408.5, 872569.5, 949706, 1022758, 1088846.5, 1149543.5, 1203080.5, 1247561, 1286516.5, 1320628, 1344814, 1357527, 1365572, 1375075.5, 1390487.5, 1407814, 1422297, 1432251.5, 1437508.5, 1437575, 1426377, 1409143, 1381505, 1335454, 1280151.5, 1219327.5, 1151028.5, 1075104, 989740.5, 892589, 784644.5, 678118.5, 579388.5, 486477.5, 401252, 326401.5, 260947.5, 205139.5, 159754, 122746, 94782.5, 73813.5, 57018, 44220, 34231.5, 26245.5, 20156, 15339.5, 11284, 8157, 5945, 4234, 2827.5, 1881, 1235, 772.5, 483.5, 298.5, 177.5, 108, 64.5, 44, 38, 61.5, 47.5, 7 53, 53, 58.5, 78, 115, 154.5, 200, 300.5, 383.5, 518, 871.5, 1382.5, 2192.5, 3340.5, 5249, 8979.5, 15448, 26225, 44057.5, 71392, 109113, 159006, 224595.5, 307191.5, 405623, 520332, 646965.5, 785170.5, 930962.5, 1078572.5, 1227179.5, 1373870, 1522723.5, 1671622.5, 1812839.5, 1944963, 2068185, 2180604.5, 2280685.5, 2361196.5, 2417123.5, 2457786, 2483891, 2494890, 2496943.5, 2498862.5, 2500857.5, 2500175, 2501485, 2499141, 2492862, 2478390, 2459869.5, 2443707, 2430140, 2421345.5, 2404805, 2377592.5, 2334130, 2263164, 2163510.5, 2031018.5, 1872739.5, 1698482, 1507286, 1306381.5, 1114865.5, 938499, 771654.5, 619227.5, 488654.5, 379699.5, 289925.5, 218837.5, 165510.5, 126806, 97552, 75560, 59062, 46304.5, 36476, 28583, 22280.5, 16965.5, 12631.5, 9265.5, 6629, 4548.5, 3091, 2102.5, 1396.5, 921, 580, 345, 203.5, 137, 87, 46, 27.5, 12, 6 ] var xData = ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "48", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68", "69", "70", "71", "72", "73", "74", "75", "76", "77", "78", "79", "80", "81", "82", "83", "84", "85", "86", "87", "88", "89", "90", "91", "92", "93", "94", "95", "96", "97", "98", "99", "100"] var datas2 = []; var yData2 = []; var yArr = []; var xArr = xData.map(n => parseInt(n)); var sumFuc = (s, c) => formulaCalcByFunc(s + c, 6); var len = xArr.length; var ysum = yData.reduce(sumFuc, 0); for (var n = 0; n < yData.length; n++) { //var d = (dataArr[i] - mathCalcResult.avg) / mathCalcResult.stdDev; var y = yData[n] / ysum; yArr.push(y); } var avg = math.mean(yArr); function gaussFit(xOriginal, yOriginal, average) { var x = []; var y = []; // 过滤平滑部分 for (var i = 0; i < yOriginal.length; i++) { if (yOriginal[i] > average) { x.push(xOriginal[i]); y.push(yOriginal[i]); } } var zMatrix = math.matrix(math.log(y)); var zMatrixT =zMatrix; var xMatrix = math.ones([y.length, 3]); //[1,x,x*x] for (var j = 0; j < y.length; j++) { xMatrix[j][1] = x[j]; xMatrix[j][2] = x[j] * x[j]; } // 最小二乘法 var xMatrixT = math.transpose(xMatrix); var bMatrix = math.multiply(math.multiply(math.inv(math.multiply(xMatrixT, xMatrix)), xMatrixT), zMatrixT); // 取值 var b2 = math.subset(bMatrix, math.index(2)); var b1 = math.subset(bMatrix, math.index(1)); var b0 = math.subset(bMatrix, math.index(0)); var s = -1 / b2; var xMaxi = s * b1 / 2; var yMaxi = math.exp(b0 + xMaxi * xMaxi / s); var yFit = [] for (var n = 0; n < yOriginal.length; n++) { yFit.push(gaussFunc(xOriginal[n], xMaxi, yMaxi, s)); } return yFit; } datas2 = gaussFit(xArr, yArr, avg); for (var k = 0; k < datas2.length; k++) { var l = datas2[k] / yArr[k]; //var d = (dataArr[i] - mathCalcResult.avg) / mathCalcResult.stdDev; var y = yData[k] * l; yData2.push(y); } var colors = ['#7CCD7C', '#d14a61', '#675bba']; option = { color: colors, tooltip: { trigger: 'axis', axisPointer: { type: 'cross' } }, grid: { right: '20%' }, toolbox: { feature: { dataView: { show: true, readOnly: false }, restore: { show: true }, saveAsImage: { show: true } } }, legend: { data: ['原数据', '正态分布'] }, xAxis: [{ type: 'category', axisTick: { alignWithLabel: true }, data: xData }], yAxis: [{ type: 'value', name: '原数据', position: 'left' }, { type: 'value', position: 'right' } ], series: [{ name: '原数据', type: 'line', animation: false, showSymbol: false, itemStyle: { color: "red" }, data: yData }, { name: '正态分布', type: 'line', smooth: true, data: yData2 } ] };