Toggle navigation
2019年10月劣化度情况 滚动条
By
185******99
2019-12-19 12:47:35
脚本
16
21
作品使用的第三方脚本
数据管理
上传数据
支持小于 5M 任意格式(csv, xlsx, json, xml, ...)的数据文件
上传后可以通过生成的文件链接异步获取托管的数据。
历史数据
0 条
无历史数据
代码修改记录
信息提示
保存作品
对当前截图不满意?你还可以
上传本地截图
重新截图
作品名称
作品描述
标签
geo
grid
legend
markLine
markPoint
bar
effectScatter
line
lines
map
timeline
title
toolbox
tooltip
visualMap
作品默认版本
最新
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
20:11:45
图表已生成
整理代码
刷新
代码
var dataMap = {}; var count = 0; function dataFormatter(obj) { console.log(obj) var pList = ['北京', '天津', '河北', '山西', '内蒙古', '辽宁', '吉林', '黑龙江', '上海', '江苏', '浙江', '安徽', '福建', '江西', '山东', '河南', '湖北', '湖南', '广东', '广西', '海南', '重庆', '四川', '贵州', '云南', '西藏', '陕西', '甘肃', '青海', '宁夏', '新疆']; var temp; count += 1 for (var year = 2002; year <= 2005; year++) { var max = 0; var sum = 0; var index = 0; var per = 0; temp = obj[year]; for (var i = 0, l = temp.length; i < l; i++) { if (count == 1) { if (temp[i] > 10) { index += 1 } } else if (count == 2) { if (temp[i] > 0 && temp[i] <= 10) { index += 1 } } else if (count == 3) { if (temp[i] < 0) { index += 1 } } if (temp[i] != undefined) { per += 1 } max = Math.max(max, temp[i]); sum += temp[i]; obj[year][i] = { name: pList[i], value: temp[i] } } obj[year + 'max'] = per; obj[year + 'sum'] = (index * 100 / per).toFixed(2); } return obj; } dataMap.dataPI = dataFormatter({ 2005: [, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0], 2004: [0, 0, 0, 0, 0, 0, , 0, 0, 0, 0, 0, 0, 0, 0, 23.14, 14.86, 0, 0, 0, 0, 0, 0, , 11.09, 0, 0, 0, 0, 0, 0], 2003: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, , 0, , , 0, 0, 0], 2002: [15.4, 12.6, 0, 15.4, 13.8, 0, 18.7, 0, 0, 18, 32.9, 0, 17.7, 0, 0, 0, 34.5, 14, 11.3, 11.2, 11.8, 42.5, 12.3, 19.4, 32.2, 13.6, 28.9, 26, 0, 16.5, 28.2] }); dataMap.dataSI = dataFormatter({ 2005: [, 5.2, 0, 0, 1.3, 0.7, 0.7, 0.9, 0, 3.8, 7.7, , 3.78, 0, 4.7, 0.6, 5.7, 7.9, 3.2, 0.1, 3, 1.7, 0.3, 0.3, 5.6, 0, 2.3, 0, 0, 5.4, 3.2], 2004: [3.72, 7.24, 3.16, 0.45, 2.76, 0, , 0.77, 0, 3.44, 6.66, 0, 4.41, 0, 4.97, 0, 0, 9.41, 0, 0, 0, 9.68, 5.39, , 0, 0, 4.11, 0.27, 1.53, 2.13, 6.31], 2003: [1.49, 1.54, 1.85, 0, 1.11, 0.98, 2.54, 0.4, 2.21, 4.22, 3.29, 0.78, 8.1, 5.41, 6.63, 0.13, 8.09, 7.84, 0.41, 4.57, 3.95, 4.23, 3.4, , 1.47, 2, , , 1.08, 0, 1.17], 2002: [0, 0, 9.6, 0, 0, 9.7, 0, 6.6, 7.1, 0, 0, 2, 0, 7, 6.2, 5.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0] }); dataMap.dataTI = dataFormatter({ 2005: [, 0, -0.4, -5, 0, 0, 0, 0, -1.3, 0, 0, , 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1.8, 0, -4.9, 0, 0, 0], 2004: [0, 0, 0, 0, 0, -0.61, , 0, -0.84, 0, 0, -4.1, 0, -3.28, 0, 0, 0, 0, -0.19, -0.47, -3.44, 0, 0, , 0, -1, 0, 0, 0, 0, 0], 2003: [0, 0, 0, -1.16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, , 0, 0, , , 0, -0.58, 0], 2002: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] }); var option = { baseOption: { timeline: { tooltip: { trigger: 'item', formatter: '{b}', textStyle: { fontSize: '28', } }, // y: 0, axisType: 'category', // realtime: false, // loop: false, autoPlay: true, // currentIndex: 2, playInterval: 2000, // symbol:'roundRect', // controlStyle: { // position: 'left' // }, data: [ '2019-5', '2019-6', '2019-9', '2019-10', ], }, legend: { x: 'center', data: ['劣化度高于10%', '劣化度0~10%', '劣化度高于IPv4'], }, calculable: true, grid: { top: 80, bottom: 100 }, tooltip: { trigger: 'item', formatter: "{b}:{c}%", textStyle: { fontSize: '28', }, // formatter:function(parms){ // console.log(parms) // var str=":"+parms[0].name+"" // +parms[0].marker+"劣化度高于10%业"+parms[0].seriesName+":"+ Math.abs(parms[0].data)+"%"+"" // +parms[1].marker+"劣化度0~10%"+parms[1].seriesName+":"+ Math.abs(parms[1].data)+"%"+"" // +parms[2].marker+"劣化度高于IPv4"+parms[2].seriesName+":"+ Math.abs(parms[ 2].data)+"%"+"" // return str; // } }, xAxis: [ { 'type': 'category', 'axisLabel': { 'interval': 0 }, 'data': [ '北京', '\n天津', '河北', '\n山西', '内蒙古', '\n辽宁', '吉林', '\n黑龙江', '上海', '\n江苏', '浙江', '\n安徽', '福建', '\n江西', '山东', '\n河南', '湖北', '\n湖南', '广东', '\n广西', '海南', '\n重庆', '四川', '\n贵州', '云南', '\n西藏', '陕西', '\n甘肃', '青海', '\n宁夏', '新疆' ], splitLine: { show: false } } ], yAxis: [{ type: 'value', name: '劣化度', // inverse:'false', axisLabel: { textStyle: { fontFamily: 'Microsoft?YaHei' }, formatter: '{value} %', // formatter: function(value, index) { // var val = Math.abs(value) // return val; // } }, min: -7, max: 50 }], series: [{ name: '劣化度高于10%', type: 'bar', itemStyle: { normal: { color: 'rgb(133,109,188)', } }, barWidth: 8, }, { name: '劣化度0~10%', type: 'bar', itemStyle: { normal: { color: 'rgb(65,58,153)', } }, barWidth: 8, }, { name: '劣化度高于IPv4', type: 'bar', itemStyle: { normal: { color: "#f37229", } }, barWidth: 8, }, { type: 'pie', center: ['78%', '25%'], color: ['rgb(133,109,188)', 'rgb(65,58,153)', '#f37229'], radius: '22%', label: { normal: { formatter: '{b|{b}}\n{x|{c}%}', rich: { b: { fontSize: 15, lineHeight: 10, color: '#000', }, x: { fontSize: 23, lineHeight: 35, color: '#000', align:'center', }, } } }, labelLine: { normal: { smooth: 0.2, length: 30, length2: 30 } }, } ] }, options: [{ title: { text: '2019年5月劣化度情况' }, series: [{ data: dataMap.dataPI['2002'] }, { data: dataMap.dataSI['2002'] }, { data: dataMap.dataTI['2002'] }, { data: [{ name: '劣化度高于10%', value: dataMap.dataPI['2002sum'] }, { name: '劣化度0~10%', value: dataMap.dataSI['2002sum'] }, { name: '劣化度高于IPv4', value: dataMap.dataTI['2002sum'] } ] } ] }, { title: { text: '2019年6月劣化度情况' }, series: [{ data: dataMap.dataPI['2003'] }, { data: dataMap.dataSI['2003'] }, { data: dataMap.dataTI['2003'] }, { data: [{ name: '劣化度高于10%', value: dataMap.dataPI['2003sum'] }, { name: '劣化度0~10%', value: dataMap.dataSI['2003sum'] }, { name: '劣化度高于IPv4', value: dataMap.dataTI['2003sum'] } ] } ] }, { title: { text: '2019年9月劣化度情况' }, series: [{ data: dataMap.dataPI['2004'] }, { data: dataMap.dataSI['2004'] }, { data: dataMap.dataTI['2004'] }, { data: [{ name: '劣化度高于10%', value: dataMap.dataPI['2004sum'] }, { name: '劣化度0~10%', value: dataMap.dataSI['2004sum'] }, { name: '劣化度高于IPv4', value: dataMap.dataTI['2004sum'] } ] } ] }, { title: { text: '2019年10月劣化度情况' }, series: [{ data: dataMap.dataPI['2005'] }, { data: dataMap.dataSI['2005'] }, { data: dataMap.dataTI['2005'] }, { data: [{ name: '劣化度高于10%', value: dataMap.dataPI['2005sum'] }, { name: '劣化度0~10%', value: dataMap.dataSI['2005sum'] }, { name: '劣化度高于IPv4', value: dataMap.dataTI['2005sum'] } ] } ] }, ] };