Toggle navigation
深圳各辖区犯罪率影响因素
By
xuzhenhuiboy
2017-11-28 14:15:29
脚本
16
21
作品使用的第三方脚本
数据管理
上传数据
支持小于 5M 任意格式(csv, xlsx, json, xml, ...)的数据文件
上传后可以通过生成的文件链接异步获取托管的数据。
历史数据
0 条
无历史数据
代码修改记录
信息提示
保存作品
对当前截图不满意?你还可以
上传本地截图
重新截图
作品名称
作品描述
标签
geo
grid
legend
markLine
markPoint
bar
effectScatter
line
lines
map
timeline
title
toolbox
tooltip
visualMap
作品默认版本
最新
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
20:11:45
图表已生成
整理代码
刷新
代码
var districts = { "宝安区": { "lat": 22.5896850000, "lng": 113.8631380000 }, "南山区": { "lat": 22.5296850000, "lng": 113.9331380000 }, "福田区": { "lat": 22.5381230000, "lng": 114.0687750000 }, "罗湖区": { "lat": 22.5621550000, "lng": 114.1394890000 }, "盐田区": { "lat": 22.5760380000, "lng": 114.2389500000 }, "龙岗区": { "lat": 22.7158600000, "lng": 114.2343500000 } }; var allData = { "穆斯林影响系数": { "district_count": [{ "district": "宝安区", "count": 0.2 },{ "district": "南山区", "count": 0.3 },{ "district": "福田区", "count": 0.4 },{ "district": "罗湖区", "count": 0.4 },{ "district": "盐田区", "count": 0.2 },{ "district": "龙岗区", "count": 0.2 }] }, "外来人口影响系数": { "district_count": [{ "district": "宝安区", "count": 0.3 },{ "district": "南山区", "count": 0.3 },{ "district": "福田区", "count": 0.4 },{ "district": "罗湖区", "count": 0.26 },{ "district": "盐田区", "count": 0.28 },{ "district": "龙岗区", "count": 0.33 }] }, "失业率影响系数": { "district_count": [{ "district": "宝安区", "count": 0.1 },{ "district": "南山区", "count": 0.2 },{ "district": "福田区", "count": 0.1 },{ "district": "罗湖区", "count": 0.1 },{ "district": "盐田区", "count": 0.2 },{ "district": "龙岗区", "count": 0.2 }] }, "低收入影响系数": { "district_count": [{ "district": "宝安区", "count": 0.18 },{ "district": "南山区", "count": 0.15 },{ "district": "福田区", "count": 0.1 },{ "district": "罗湖区", "count": 0.1 },{ "district": "盐田区", "count": 0.2 },{ "district": "龙岗区", "count": 0.24 }] } }; var option = { // color: ['#85b6b2', '#6d4f8d','#cd5e7e', '#e38980','#f7db88'], bmap: { center: [114.1039166260,22.5902744004], zoom: 12, roam: true, enableMapClick: false, mapStyle: { styleJson: [{ "featureType": "all", "elementType": "all" }, { "featureType": "poi", "elementType": "all", "stylers": { "visibility": "on" } }] } }, legend: { show: false, orient: 'vertical', right: 20, top: 15, padding: 10, backgroundColor: "rgba(255,255,255,0.8)", data: [] }, series: [{ type: 'pie', data: [] }] }; myChart.setOption(option); myChart.on('legendselectchanged', function (params) { console.log(params.name); for(var prop in districtChart){ districtChart[prop].dispatchAction({ type: 'legendToggleSelect', name:params.name }); } }); setTimeout(init, 0); function init() { initMap(); initPieDistrict(myChart, getMap()); showPie(["穆斯林影响系数", "外来人口影响系数", "失业率影响系数", "低收入影响系数"]); //showPie(["直接访问", "联盟广告", "视频广告"]); } function initMap() { var top_left_navigation = new BMap.NavigationControl({ //type: BMAP_NAVIGATION_CONTROL_SMALL }); var map = getMap(); //map.centerAndZoom("苏州", 13); map.addControl(top_left_navigation); map.disableDoubleClickZoom(); map.removeEventListener("click"); return map; } function getMap() { return myChart.getModel().getComponent('bmap').getBMap(); } var districtPoint = districts; var districtChart = {}; var districtLabels = []; var parentChart = null; var initPieDistrict = function(chart, map) { parentChart = chart; var count = 0; for (var prop in districtPoint) { var district = prop; var position = districtPoint[prop]; var id = "districtPoint" + count++; districtLabels.push(district); districtChart[district] = initPieMarker(map, id, district, position); } //console.log(districtLabels); //console.log(districtChart); } function initPieMarker(map, id, district, position) { var htm = '
'; var point = new BMap.Point(position.lng, position.lat); var myRichMarkerObject = new BMapLib.RichMarker(htm, point, { "anchor": new BMap.Size(-30, -30), barkground: "transparent" }); map.addOverlay(myRichMarkerObject); document.getElementById(id).parentNode.style.backgroundColor = "transparent"; document.getElementById(id).parentNode.style.zIndex = "1"; var myChart = echarts.init(document.getElementById(id), "macarons"); var option = { tooltip: { trigger: 'item', formatter: "{a}
{b}: {c} ({d}%)" }, title: { left: "center", top: "center", textStyle: { fontSize: 14, fontWeight: "bold" } }, series: [{ name: district, type: 'pie', avoidLabelOverlap: false, label: { normal: { show: false, position: 'center', formatter: "{a}" } }, radius: ['25', '40'], data: [] }] } myChart.setOption(option); return myChart; } function showPie(arr) { let obj = {}; console.log(arr.length, "len") districtLabels.forEach((i) => { obj[i] = {}; arr.forEach((j) => { console.log(j, "xxx") obj[i][j] = 0; }); }); console.log(obj, "AA") //数据降维 for (let prop in allData) { allData[prop].district_count.forEach((i) => { if (obj[i.district][prop] === 0) { obj[i.district][prop] = i.count; } }); } console.log(obj); setData(obj, arr); } var placeHolderStyle = { normal : { color: 'rgba(255,255,255,0.8)', label: {show:false}, labelLine: {show:false} }, emphasis : { color: 'rgba(0,0,0,0)' } }; function setData(data, label) { districtLabels.forEach((district) => { var count = 0; var dt = (data[district]); var newPieData = []; for (let prop in dt) { newPieData.push({ name: prop, value: dt[prop] }); count += dt[prop]; } console.log(newPieData); if (count === 0) { newPieData = []; } districtChart[district].setOption({ title: { show: count > 0, text: district }, legend: { show: false, data: label }, series: [{ data: newPieData }, { tooltip:{show:false}, type: 'pie', radius: [0, 25], data: [{ value: 0, itemStyle : placeHolderStyle }] }] }) }); let labelName = label.map((i) => { return { name: i }; }); //修改parentChart parentChart.setOption({ legend: { show: (label.length > 0), data: label }, series: [{ data: labelName }] }); }