Toggle navigation
18同济交通夏令营录取情况
By
n***1
2018-07-24 10:37:07
脚本
16
21
作品使用的第三方脚本
数据管理
上传数据
支持小于 5M 任意格式(csv, xlsx, json, xml, ...)的数据文件
上传后可以通过生成的文件链接异步获取托管的数据。
历史数据
0 条
无历史数据
代码修改记录
信息提示
保存作品
对当前截图不满意?你还可以
上传本地截图
重新截图
作品名称
作品描述
标签
geo
grid
legend
markLine
markPoint
bar
effectScatter
line
lines
map
timeline
title
toolbox
tooltip
visualMap
作品默认版本
最新
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
20:11:45
图表已生成
整理代码
刷新
代码
//关于这个图表我做的视频简介:https://www.bilibili.com/video/BV1pD4y127tW //各位观众老爷们一键三连,下次一定! var fx = ['01、03', '02', '04', '05', '06', '07', '08' ] var fxdata = [] for (var i = 0; i < fx.length; i++) { fxdata.push({ name: fx[i], max: 20 }) } var data = {'同济大学': [[26, 17, 7, 0, 17, 7, 2], [10, 8, 1, 2, 12, 7, 0], [[252.0, 245.0, 251.0, 262.0, 249.0, 253.0, 255.0, 228.0, 229.0, 246.0, 253.0, 225.0, 237.0, 243.0, 234.0, 231.0, 235.0, 223.0, 230.0, 233.0, 228.0, 243.0, 229.0, 237.0, 223.0, 226.0], [249.8, 257.5, 252.5, 256.5, 243.3, 241.8, 251.8, 249.8, 248.0, 253.2, 249.3, 255.0, 247.2, 251.3, 249.5, 240.2, 248.2], [304.0, 286.0, 291.0, 295.0, 281.0, 271.0, 277.0], [], [293.5, 256.8, 267.5, 294.5, 277.6, 273.5, 296.0, 264.7, 276.6, 267.5, 264.2, 262.2, 268.9, 266.7, 290.0, 298.0, 256.0], [265.0, 292.0, 271.0, 265.0, 284.0, 261.0, 274.0], [263.3, 285.5]]], '中南大学': [[3, 4, 3, 0, 1, 1, 0], [1, 6, 2, 0, 7, 3, 0], [[233.0, 236.0, 225.0], [244.7, 240.8, 245.5, 255.0], [279.0, 287.0, 274.0], [], [260.0], [265.0], []]], '郑州大学': [[3, 1, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0], [[231.0, 240.0, 242.0], [242.5], [285.0], [], [], [], []]], '哈尔滨工业大学': [[2, 0, 0, 0, 0, 0, 0], [2, 0, 0, 0, 0, 0, 0], [[253.0, 233.0], [], [], [], [], [], []]], '东南大学': [[0, 1, 0, 0, 2, 2, 0], [1, 0, 2, 0, 2, 0, 0], [[], [243.7], [], [], [283.2, 265.7], [272.0, 264.0], []]], '西南交通大学': [[2, 2, 2, 3, 6, 4, 1], [0, 3, 3, 2, 6, 2, 2], [[225.0, 238.0], [240.2, 242.7], [276.0, 269.0], [244.0, 231.0, 253.0], [303.0, 279.6, 258.0, 263.9, 271.2, 255.5], [261.0, 279.0, 265.0, 269.0], [263.1]]], '湖南大学': [[2, 0, 0, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [[226.0, 223.0], [], [], [], [], [], []]], '吉林大学': [[2, 0, 3, 0, 1, 0, 0], [4, 0, 1, 0, 2, 1, 1], [[236.0, 231.0], [], [278.0, 293.0, 268.0], [], [276.7], [], []]], '长安大学': [[6, 0, 0, 0, 2, 0, 0], [5, 1, 0, 0, 3, 0, 0], [[227.0, 245.0, 251.0, 230.0, 237.0, 247.0], [], [], [], [255.0, 256.0], [], []]], '西北工业大学': [[1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [[250.0], [], [], [], [], [], []]], '沈阳建筑大学': [[1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [[227.0], [], [], [], [], [], []]], '华中科技大学': [[1, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0], [[223.0], [], [], [], [300.0], [], []]], '重庆交通大学': [[0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0], [[], [], [], [], [], [], []]], '山东大学': [[0, 1, 1, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0], [[], [244.7], [276.0], [], [], [], [262.5]]], '宁波大学': [[0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0], [[], [], [], [], [], [], []]], '大连理工大学': [[1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [[244.0], [], [], [], [], [], []]], '东北林业大学': [[0, 0, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 0, 0], [[], [], [], [], [258.0], [], []]], '石河子大学': [[0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0], [[], [], [], [], [], [], []]], '中国矿业大学': [[1, 2, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [[225.0], [252.8, 247.0], [], [], [], [], []]], '中国民航大学': [[0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0], [[], [], [], [], [], [], []]], '内蒙古大学': [[1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [[227.0], [], [], [], [], [], []]], '中国地质大学(北京)': [[0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0], [[], [], [], [], [], [], []]], '重庆大学': [[0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [[], [], [], [], [], [], []]], '武汉理工大学': [[0, 0, 0, 0, 0, 1, 0], [0, 1, 0, 0, 1, 0, 0], [[], [], [], [], [], [265.0], []]], '北京交通大学': [[0, 1, 0, 1, 1, 1, 0], [0, 0, 0, 0, 2, 1, 0], [[], [245.2], [], [234.0], [263.6], [261.0], []]], '华南理工大学': [[0, 0, 2, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [[], [], [273.0, 270.0], [], [], [], []]], '哈尔滨工业大学(威海)': [[0, 0, 1, 0, 2, 0, 0], [0, 0, 0, 1, 2, 0, 0], [[], [], [270.0], [], [263.4, 261.0], [], []]], '中山大学': [[0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [[], [], [287.0], [], [], [], []]], '中国农业大学': [[0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [[], [], [268.0], [], [], [], []]], '南京理工大学': [[0, 0, 1, 2, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [[], [], [268.0], [244.0, 246.0], [], [], []]], '苏州大学': [[0, 0, 0, 1, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0], [[], [], [], [243.0], [259.6], [], []]], '厦门大学': [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [[], [], [], [], [], [], []]], '扬州大学': [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [[], [], [], [], [], [], []]], '上海海事大学': [[0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [[], [], [], [230.0], [], [], []]], '北京林业大学': [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [[], [], [], [], [], [], []]], '北京工业大学': [[0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 0, 0, 0], [[], [], [], [], [292.0], [], []]], '南京工业大学': [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [[], [], [], [], [], [], []]], '新疆大学': [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [[], [], [], [], [], [], []]], '大连海事大学': [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 0, 0], [[], [], [], [], [], [], []]], '兰州交通大学': [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [[], [], [], [], [], [], []]], '华东交通大学': [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0], [[], [], [], [], [], [], []]], '四川大学': [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1], [[], [], [], [], [], [], []]]} var nodedata = [] var university = '同济大学' var alldata = [] for (var key in data) { tempdata = data[key][2] for (var i = 0; i < tempdata.length; i += 1){ for (var j = 0; j < tempdata[i].length; j += 1){ alldata.push([fx[i],tempdata[i][j]]) } } } function getscoredata(university,tempdata) { var result = [] for (var i = 0; i < tempdata.length; i += 1){ for (var j = 0; j < tempdata[i].length; j += 1){ result.push([fx[i],tempdata[i][j]]) } } return result } for (var key in data) { var totalnum = data[key][0].reduce(function(a, b) { return a + b; }, 0)+data[key][1].reduce(function(a, b) { return a + b; }, 0) if (key == university) { nodedata.push({ name: key, symbolSize: Math.max(totalnum, 7), value: data[key][2], label:{color:'rgba(193,56,52,1)'}, itemStyle: { normal: { color: 'rgba(193,56,52,1)' } } } ) } else { nodedata.push({ name: key, symbolSize: Math.max(totalnum, 3), value: data[key][2], label:{color:'black'}, itemStyle: { normal: { color: 'rgba(51,71,85,1)' } } } ) } } option = { title: { text: '18同济交通夏令营录取情况', subtext: '点击右边学校可交互', x: 'center' }, backgroundColor: '#eee', legend: { data: ['录取','不录取'], align: 'left', left: 10 }, toolbox: { feature: { magicType: { type: ['stack', 'tiled'] }, dataView: {} } }, tooltip: {}, xAxis: [{ data: fx, name: '方向', silent: false, axisLine: { onZero: true }, splitLine: { show: false }, splitArea: { show: false } },{ gridIndex:1, data: fx, name: '方向', silent: false, axisLine: { onZero: true }, splitLine: { show: false }, splitArea: { show: false } } ], yAxis: [{ max: 35, name:'人数', inverse: false, splitArea: { show: false } },{gridIndex:1, name:'复试总分', max: 300, min:210, inverse: false, splitArea: { show: false } } ], grid: [{ left: 50, name: '人数', top:'10%', height: '40%', width: '40%', },{ left: 50, name: '人数', top:'60%', height: '35%', width: '40%', } ], series: [{ name: '录取', type: 'bar', stack: 'one', xAxisIndex: 0, yAxisIndex: 0, data: data[university][0], label: { normal: { show: true, position: 'inside' } }, }, { name: '不录取', type: 'bar', stack: 'one', xAxisIndex: 0, yAxisIndex: 0, data: data[university][1], label: { normal: { show: true, position: 'inside' } }, }, { type: 'graph', layout: 'force', left:'40%', right:'0%', top:'10%', bottom:'50%', focusNodeAdjacency: true, roam: true, data: nodedata, label: { normal: { position: 'top', show: true, textStyle: { color: 'rgba(18,89,147,1)', fontSize: 12 }, } }, force: { repulsion: 70 }, links: [], tooltip: { formatter: function(d) { var temp = data[d.data.name] var totalnum = temp[0].reduce(function(a, b) { return a + b; }, 0)+temp[1].reduce(function(a, b) { return a + b; }, 0) return d.name + '参加人数:' + totalnum } } }, { type: 'pie', radius: [0, '30%'], center: ['70%', '75%'], data: [{name:'录取', value:data[university][0].reduce(function(a, b) { return a + b; }, 0) },{name:'不录取', value:data[university][1].reduce(function(a, b) { return a + b; }, 0) } ], label: { normal: { formatter: '{hr|}\n {b|{b}:}{c} {per|{d}%} ', backgroundColor: '#eee', borderColor: '#aaa', borderWidth: 1, borderRadius: 4, // shadowBlur:3, // shadowOffsetX: 2, // shadowOffsetY: 2, // shadowColor: '#999', // padding: [0, 7], rich: { a: { color: '#999', lineHeight: 22, align: 'center' }, // abg: { // backgroundColor: '#333', // width: '100%', // align: 'right', // height: 22, // borderRadius: [4, 4, 0, 0] // }, hr: { borderColor: '#aaa', width: '100%', borderWidth: 0.5, height: 0 }, b: { fontSize: 16, lineHeight: 33 }, per: { color: '#eee', backgroundColor: '#334455', padding: [2, 4], borderRadius: 2 } } }} }, { name: '初选全部', type: 'scatter', symbolSize:8, xAxisIndex: 1, yAxisIndex: 1, data: alldata, label: { normal: { show: false, position: 'inside' } }, }, { name: '录取', type: 'scatter', symbol:'arrow', symbolSize:7, xAxisIndex: 1, yAxisIndex: 1, data: getscoredata(university,data[university][2]), label: { normal: { show: false, position: 'inside' } }, } ] }; myChart.on('click', function(p) { console.log(p) if (p.seriesType == 'graph') { var university = p.name var nodedata = [] var piedata = [] var scatterdata = [] for (var key in data) { var totalnum = data[key][0].reduce(function(a, b) { return a + b; }, 0)+data[key][1].reduce(function(a, b) { return a + b; }, 0) if (key == university) { nodedata.push({ name: key, symbolSize: Math.max(totalnum, 7), value: data[key][2], label:{color:'rgba(193,56,52,1)'}, itemStyle: { normal: { color: 'rgba(193,56,52,1)' } } } ) piedata=[{name:'录取', value:data[university][0].reduce(function(a, b) { return a + b; }, 0) },{name:'不录取', value:data[university][1].reduce(function(a, b) { return a + b; }, 0) }] scatterdata = getscoredata(university,data[university][2]) } else { nodedata.push({ name: key, symbolSize: Math.max(totalnum, 3), value: data[key][2], label:{color:'black'}, itemStyle: { normal: { color: 'rgba(51,71,85,1)' } } } ) } } myChart.setOption({ title: { subtext: university }, series: [{ data: data[university][0] }, { data: data[university][1] }, { data: nodedata },{data:piedata},{},{data:scatterdata}] }) } })